
PTI
AD-A219 634

Report No. 7164

More SURAP2 Hierarchical Routing Issues
(SRNTN-34)

Gregory Lauer and Ross Callon

Prepared By:

BBN Systems and Technologies Corporation
10 Moulton Street
Cambridge, MA 02138

Prepared for:

DARPA/ISTO
1400 Wilson Bl. ," 1
Arlington, VA. 22209

Sponsored by:

The Defense Advanced Research Projects Agency D
1400 Wilson Blvd.
Arlington, VA 22209

This research is suapported by the Information Processing Technologies Office of the Defense Advanced

Research Projects Agency under contracts: MDA-903-83-C-0173 & N00140-87-C-8910. The views

and conclusions contained in this document are those of the authors and do not represent the official

policies, either expressed or implied, of th.D2efense Advanced Research Projects Agency, the Army or

the United States Government. - .

CLEARED

FEB 7- 190

90 'd I

90 03 20 164

Repoct No. 7164 BBN Systems and Technologies Corporation

Contents

1 Introduction 1

2 Cluster and SuperCluster Membership 2
2.1 Basic Principles for Cluster Membership 2
2.2 Reporting Cluster Membership 3
2.3 Requesting and Refusing Cluster Membership 3
2.4 An Overview of Supercluster Membership 4
2.5 Overview of SPF Operation 5

3 Node Tracker Algorithms 7
3.1 Requirements 7
3.2 Node Tracker Options 8
3.3 Node Tracker at the CH 9
3.4 Node Tracker at the SCH 9
3.5 Node Tracker at the SCH with Caching at CH 9
3.6 Traffic Considerations 10

4 Broadcast Algorithms for Surap 2 11
4.1 Broadcast from Cluster Head to PR Unit 11
4.2 Requirem ents . 11
4.3 Recommended Algorithm 11
4.4 Alternate Broadcast Algorithms 12
4.5 Broadcast Between Clusterheads and/or Superclusterheads 13
4.6 Requirem ents 13
4.7 O ptions . 14

4.7.1 First Option; Spanning Tree Without Flooding 14
4.7.2 Second Option; Augmented Spanning Tree Algorithm 15
4.7.3 Third Option; Flooding with Acknowledgements 15
4.7.4 Fourth Option; Flooding Over Reliable Links 16
4.7.5 Fifth Option; Extended Flooding Algorithm 16
4.7.6 Sixth Option; Repeated Transmissions 17

4.8 Summary and Recommendation 19

I
Report No. 7164 BBN Systems and Technologies Corporation

1. Introduction

This paper discusses a number of issues relating to hierarchical routing for Surap 2. It is assumed that
Surap 2 will use a three level (PR units, clusters, and superclusters) hierarchical structure, with PROP style
routing used between PR units within a cluster, and SPF routing used between clusters and superclusters.
The reasons for these design choices are discussed in detail in a related paper [1]. Section 2 describes the
maintenance of cluster rcmbership information, with respect to initialization of the network, partitioning
and reconnection of the network, and operation when a PR unit moves or a CH or SCH dies. Section 3
describes Node Tracker (NT) algorithms. Section 4 of this paper describes the broadcast algorithms for
use in Surap 2.

The emphasis throughout this paper is on the various options available for protocol design, and
the reasons for particular design choices. The specific details of protocol design and unambiguous
specification of protocol operation are topics for future work.

1 NA II

ID -

Lii

i A. -

!0 r
I

BBN Systems and Technologies Corporation Report No. 7164

I 2. Cluster and SuperCluster Membership

2.1 Basic Principles for Cluster Membership

As discussed in [1], the ability for a PR unit to simultaneously belong to more than one cluster is important
to allow data to be correctly routed to mobile PR units. In addition, this ability increases the robustness
in the case of primary cluster failure. Since each PR unit whose primary cluster has failed will already
belong to another cluster, they can therefore immediately inform one of the other clusterheads that it is its
new primary cluster. The clustering algorithm therefore allows the PR units to belong to up to k clusters
simultaneously. The variable k may be set to 1, 2, or 3 when the network is configured, and must be the
same for all PR units.

A PR unit's primary cluster is treated differently from its secondary clusters in two respects: (1)
The primary cluster ID is used in the source address field of outgoing data; and (2) The NT algorithm
returns the primary cluster as the PR unit's address. When the PR unit changes its primary cluster, its
correspondent PR units find out about this change by examining the "source address" field of the arriving
data units. This implies that PR units must continuously monitor this field on arriving data. In other
respects, the multiple clusters to which a PR unit belong are not given special treatment. For example,
the PR unit participates in the internal intra-cluster routing in all of its clusters.

In order to minimize the disruption caused by changing of primary clusters, it is desirable to pick as
primary the cluster in which the PR unit will be likely to stay the longest. In addition, it is also desirable
to not change primary cluster too often. For example, it is important that a single link going up and down
intermittently be unlikely to cause a PR unit to rapidly oscillate between tw, -,3rnative primary clusters.
We propose that the PR units join the primary cluster corresponding to the L.oser, zlusterhead. In case of
a tie, the PR unit will not change primary cluster (if it already belongs to one -. e clusters in the tie) or
will join one at random (if it is unclustered, or belongs to another cluster which is further away), while
preferring a cluster which had already been a secondary cluster. This proposal ensures that although a
link change which causes a path length to change by one unit could cause a PR unit to change primary
clusters, it will take a larger change in path length to cause an oscillation in primary clusters. Although
there is no guarantee that the PR unit will stay in this "closest" cluster the longest, in the absence of
morc detamiled information about the likely future path of the PR unit this is probably the best choice.

When a PR unit changes its primary cluster, it will immediately notify its correspondent PR units,
and its new primary CH will update the NT databases. It is possible that a relatively short time period
(less than one PROP cycle) may elapse before packets begin to arrive addressed to that PR unit in its
new cluster. For this reason, it is important that all of the PR units in the new primary cluster know a
good route to the PR unit. This can only occur if this new primary cluster has already been a verondary
cluster for some period of time. Similarly, as it may take some time for all of the correspondent PR units
and NT address cache's to note the new address, it is also desirable that the old primary cluster remain

2

Report No. 7164 BBN Systems and Technologies Corporation

a seconda.ir cluster for a period of time (if packets arving at an old cluster can be forwarded, then th's
is less cntical, although still desirable). Finally, when a CH dies, the new primary CH will become the
closest CH and thus become the primary. For this reason, it is desirable that the second closest CH be a
secondary cluster.

It is not possible to design a clustering algorithm which guarantees to meet all of these desirable
features. A straightforward. easy to implement, reasonable approximation is to have each PR umt join
its k closest clusters, measured in terms of distance (number of hops) to the CH. Once again, in case
of a tie, the PR unit will prefer clusters which were previously primary or secondary clusters, and will
otherwise choose one at random.

By having all PR units join the closest clusters, we can ensure that each cluster is internally fully
connected. For example, if PR units were to always continue to belong to a cluster for a fixed minimum
time period after ceasing to have the cluster as their primary cluster, it is possible that a mobile PR unit
could move so far away from its previous primary cluster that it still claimed to belong to it, even though
none of its "good neighbor" PR units were members of the cluster. A more complex alternative would
be to allow PR units to continue to belong to the old primary cluster for a fixed minimum time period
only in the case where they continue to have a good path to the CH which lies entirely within the cluster.
This alternative is not recommended because it seems unnecessarily complex, but could be considered in
the future if observed network behavior warrants it. The possibility of having CHs request that PR units
either leave or join their cluster is considered in Section 2.3.

2.2 Reporting Cluster Membership

It is important that the PR units report their cluster membership changes for node tracking and to allow
the CHs to have the information needed to manage the cluster. This is done by sending a -PR State"
Monitoring Data Packet (MDP) to each clusterhead. In the case that the PR unit has left a cluster, this
packet is also sent to the old clusterhead. This packet indicates the primary and all secondary clusters,
the reason why it is being sent, plus other information relevant to network monitoring.

The hierarchic routing table (HRT) is obtained from the neighboring PR units in the cluster just
joined. This is done by having the PR, when it joins a cluster, indicate in its PROP that it has the no
HRT, thus generating an update by the neighboring PRs. (See 4.3 for more details.)

2.3 Requesting and Refusing Cluster Membership

One proposal allows a CH to refuse membership in its cluster to a PR unit. This may be important, for
example, in order to limit the cluster size, or to change the cluster shape in order to create a desired
inter-cluster connectivity. A PR unit would therefore attempt to join the k closest clusters, and would
end up belonging to the k closest that will accept it.

There are two ways to allow for this capability. With the most straightforward method, upon hearing
about the presence of a nearby CH whose cluster it wants to join, a PR unit transmits a "request to join"
to the CH. The CH would then respond with either the interclusier routes (ICR) packet, ' hich wouid
also imply acceptance, or would respond with a "cluster membership refused" packet. The problem with
this method is that it complicates and slows down the normal process by which a PR unit joins clusters.

3

BBN Systems and Technologies Corporation Report No. 7164

In the great majority of cases, the PR units will be allowed to join the closest clusters. It is therefore
more desirable to implement a scheme which does not complicate this most frequent mode of operation.

The recommended second option therefore allows the PR unit to immediately join the closest clusters
in the normal manner. When it joins a cluster it sends a "PR state MDP" to the CH as described in
section 2.2. If th,: CH does not want to have this PR unit in its cluster, it sends a "Please Leave" packet
to the PR unit. The PR unit is required to obey this request. Similarly, a CH may send a "Please Join"
packet to a PR unit which is adjacent to the cluster.

These packets would be used to give the network testbeds as much control over the logical structure
of the network as is provided over its physical structure by PRISM. The number and type of packets
required to control the logical structure of the network is currently under investigation.

2.4 An Overview of Supercluster Membership

Clusterheads join the supercluster associated with the nearest SCH (measured in terms of CH to CH hops,
not PR unit hops). Each CH belongs to only one supercluster.

Network initialization is relatively straightforward. Initially, CHs find out about neighboring clusters
through the PROPs. Clearly, the existence of a neighboring cluster implies the existence of a neighboring
CH. CHs then exchange "clusterhead neighbor packets" (CNPs) with their neighboring CHs in order to
determine the status of the interclusterhead link, and other important information (see below). Note that
the neighboring cluster will not be in the HRT of the packet radios, and thus the CNPs must be delivered
without using the HRTs. This requires that PRs be able to route to neighboring clusters without using
the hierarchical Youting algorithm.

There are two possible ways that CHs and SCHs can find out about each other. If a SCH is also a
CH, then it (acting as a CH) can immediately join its own supercluster. It then indicates its supercluster
membership to its neighboring CHs in the CNPs. If SCHs are not also CHs, then they must belong to
one or more clusters organized by other CHs. In this case, the SCH has to announce its existence to each
of its PR unit's clusterheads, again by use of the CNP.

The CNPs are exchanged between neighboring CHs, and can be triggered by any of three conditions:
(1) when a CH first finds out about a neighbor CH, (2) when the CH state changes (for example, when a
CH joins a supercluster); and (3) if more than x seconds have elapsed since the last CNP was sent. The
CNP includes both the supercluster membership information, and a count of how far it is to the SCH.
This allows CHs to determine the closest SCH, and therefore contains sufficient information to allow
CHs to determine their supercluster membership. If in the future, we go to a system where the "width"
of the inter-cluster path effects muting, the CNP will also give each CHs view of the link status.

As mentioned above, the "first" CH in the center of the supercluster (i.e., either the CH which is also
a SCH, or any CH which has a SCH attached to a PR unit in its cluster) can initially find out about the
SCH in a straightforward manner. This CH will then report its supercluster membership, and its distance
to the SCH, in the CNP sent to each of its neighbor CHs. These neighbor CHs can then determine
whether this new SCH is closer than their existing SCH. If so, then they join the new supercluster and
remove themselves from the old cluster.

SCHs must know thl, iicntity of each CH in their supercluster. This may be determined by looking
at the routing metric updates (RMUs) sent by each CH (see Section 2.5). Node Tracking information is

4

I Report No. 7164 BBN Systems and Ttclnologies Corporation

3 determined by the penodic NT update broadcast messages sent by each CH. When a Cl joins a new

supercluster, it must obtain the corresponding supercluster routing table. This is accomplished in the

same way (described in Section 2.5 below) that correction of formerly partitioned networks and network

initialization are accomplished.

We may define additional packet types in the future, to support the superclusterhead obtaining more

detailed information from the clusterheads. "Please Leave" and "Please Join" packets are defined in the

same manner as for cluster membership.

3 2.5 O(-erview of SPF Operation

Clusterheads send out connectivity changes in "Routing Metric Update" (RMU) packets. Initially the

SPF routing algorithm will use only connectivity in determining the intercluster routes. It is therefore

unnecessary to send out updates when the length of the interclusterhead link changes. The RMU pack-

ets contain the status of all intercluster links with neighboring clusters, and also give the supercluster

3" membership of all neighboring CHs.

RMUs can only be sent if (1) at least z seconds have elapsed since the last RMU was sent out;

(2) if at least 9, seconds have elapsed since the CH last changed supercluster membership, or (3) if at

Sleast z seconds have elapsed since the CH was initialized. Point (1) prevents the CH from flooding the

supercluster with an unlimited number of RMUs. Points (2) and (3) are useful to prevent an RMU from

being sent out if changes are likely to occur almost immediately in the state of the CH or of its links

to its neighbors. RMUs are broadcast throughout the supercluster using the algorithm recommended in

Section 4.

In the case of initial network "startup", the delay of y seconds can greatly reduce the total RMU

I traffic sent out. Note that the CHs send out RMUs on an event driven basis. Thus, when they first join a

supercluster, they would like to send out an RMU immediately. However, they also will be sending out

CNP to their neighboring CHs. When the network is first initialized, it is quite likely that the neighbor

CHs are either part of the "NULL" supercluster (i.e., they know of no SCH), or belong to a supercluster

which is not as close as the newly discovered supercluster. The delay of y seconds is therefore set large

enough to give each neighboring CH time to respond to the CNP before the RMU is sent out. Also

when the network is first being brought up, if one SCH is turned on well before the others, then all CHs

will at first belong to the same supercluster. In the presence of some initial fluctuations in supercluster

membership, this could lead to a great deal of RMU traffic if there were not a specified maximum rate

at which RMUs can be sent out.

When a new interclusterhead link is discovered, after the successful exchange of CNPs, the CHs must

exchange routing information. In all cases, the new interclusterhead link will result in the broadcast of

RMU packets from each CH giving its local connectivity. It is also necessary for the two C--Is to send

each other the complete network connectivity as they know it. This allows for correction of the routing

information when two partitioned networks are joined, and during network initialization. The two CHs

send each other the complete network connectivity as they know it by recreating the most recent RMU

received from each peer node. This is possible because for routing the CH must know each peer node's

connectivity and must store the most recent sequence number associated with each update.

In the case that these two CHs had previously been parts of separate partitions in a partitioned

5

U

I BBN Systems and Technologies Corporation Report No. 7164

I network, the RMUs will be broadcast by each receiving CH. and thereby allow each part of the network
to correctly understand the other part's topology.

The RMUs are only necessary when the new neighbor CHs had no previous good path between them.
However, even if the set of RMUs are always sent out, in the case where the two CHs had previously been
part of a well connected network, the sequence numbers will all be correct and all messages will therefore

I be interpreted as old. This will keep the RMUs from being broadcast throughout the supercluster.

I

I
I
U
I
I
I
I
I
I
I

I

I

Report No. 7164 BBN Systems and Technologies Corporation

3. Node Tracker Algorithms

3.1 Requirements

PR units currently determine the identity of other PR units and devices in their cluster(s) by using the
information contained in the PROPs. A Node Tracker (NT) algorithm is used to determine the address
(including cluster and supercluster) for PR units and devices outside of the cluster, whether in the same
supercluster, or in another supercluster. The mapping between devices and PR units is also provided.

Three types of packets may potentially be involved in the NT algorithm. "NT requests" are used
to request the address and device-to-PR-unit mappings associated with a given device or PR unit. 'NT
updates' may be used to transmit NT status information between CHs and/or SCHs. Finally, -NT
responses" are returned mi response to NT requests, and give the requested information. If it is necessary
to execute a distributed search by broadcasting a NT request to multiple nodes (CHs or SCHs), this
distributed search will be referred to as an *NT search.'

We are assuming a three level hierarchy (PR units, CHs, and SCHs). NT functions are located at the
CHs and SCHs. Individual PR units are not directly involved in the NT algorithm, except as originators
of NT requests. The manner in which the PR units and devices notify their CHs of changes in cluster
membership is discussed in Section 2.2.

The most difficult question in the design of the NT algorithm is how to distribute the NT information
between the various components of the PR network. In particular, what is the distribution of responsibility

between CHs and SCHs? Possible options are discussed in Section 3.2 below.

It is important to allow for the possibility of future changes to the NT algorithm without any resulting
change to the PR units. Initially all NT requests from a PR unit will be sent directly to its primary
CH. In the future, NT requests may instead be sent to the SCH associated with the primary CH. The
PR units must therefore be configured so that the destination for the NT request can be set to either of

these values without requiring a software change to the PR unit. In addition, the PR unit should not care
about where the corresponding NT response is returned from. Depending upon the specific information
requested, and what information is stored at the CH (or SCH), in some cases the CH may have the
requested information. In other cases the CH may need to search for the information by requesting its
SCH, or other CHs. However, if we were in the future to change the amount of information stored by
the CH and/or SCH, or to change the NT algorithm used to find the NT information not stored at the CH
or SCH, software changes would be required in the CHs and SCHs only. No change would be needed

in the PR units.

7

I

I BBN Systems and Technologies Corporation Report No. 7164

I 3.2 Node Tracker Options

The "optimal" node tracker is the one which minimizes the amount of traffic associated with its operation,

always responds with the correct address, and is simple to implement. It does not exist. For example.

consider a network in which the nodes are static and there are many requests. Clearly the correct action
is to have the NT database replicated in many locations, since we rarely have to update the database and

this strategy minimizes the traffic associated with retrieving the address. On the other hand. consider
a network in which there are very few requests for addresses and in which the nodes are constantly
changing clusters. Clearly the correct action is to have the NT in a few locations or to require a search

for the hierarchical address, since this minimizes the traffic associated with updating the database.
A reasonable goal for a node tracker design is that it produce a manageable amount of traffic for a

wide range of update and request rates, responds with a useful address almost all the time and is not too

difficult to implement.
To organize the discussion of node tracker options we consider 3 different aspects of node tracker

operation. We first categorize them by describing what information is stored where. We then consider
how quickly the node tracker must respond to requests for addresses and to updates. This step reduces
the number of designs under consideration. Finally, we compare how much traffic is generate to update
and access the node tracker for the remaining designs.

The various categories of nle tracker algorithms are:

3 * At the clusterhead keep information about:

1. the cluster

2. the supercluster containing the clusterhead

3. the entire network

3 * At the superclusterhead keep information about

1. the supercluster

2. the entire network

Now let us consider the response time requirements. There are two components to response time:
that to updates, and that to requests. The former defines the probability of getting a correct response, the
latter the speed with which a response is obtained. We note that due to the forwarding action taken by
overlapping clusters, the response does not have to be completely accurate: if the address is a secondary
cluster of the PR, then the message will be delivered successfully. We generally want to respond to

a node tracker request rapidly: thus we can tolerate a node tracking system in which updates to the
hierarchical address database are processed relatively slowly compared to the speed with which requests

are answered.
A strategy which is consistent with the above observations is to send out updates to the NT database

only periodically. If this interval is comparable to the time required for PRs to switch clusters, then the
NT responses will generally be correct (returning a primary or secondary address) and the update traffic

will have been greatly reduced. In the following analysis, we will always assume that updates (when
required) are "bundled up" and sent out periodically.

I8

Report No. 7164 BBN Systems and Technologies Corporation

In light of the above observations, we can quickly dispose of many of the node tracker options
listed above. Since rapid response time to NT requests is important, algorithms which must search for
the correct address are immediately at a disadvantage: any search will take a comparatively long time
to perform. For example. if there is a uniform distribution of requests for addresses, nodes with only
information about a superclus'er or cluster will find that most of the requests require a search for the
answer. In addition, since we cannot tolerate the delay associated with bundling up requests, each request
can generate a search for an address; thus algorithms in which NTs do not keep track of the entire network
will be slower and (potentially) generate more traffic. Another way of phrasing this is that, since we
can limit the maximum amount of traffic generated by updates (via the bundling interval), we are most
interested in algorithms which have the smallest amount of traffic associated with servicing a request.

Thus we will only consider algorithms which maintain a database of the entire network, either at the3 clusterhead or at the superclusterhead.

Before considering how much traffic is ass ciated with these strategies, we must define the algorithms
a little more.

3.3 Node Tracker at the CH

In this algorithm, every T seconds the CH sends the SCH a packet containing the changes that have
occurred m the primary cluster membership (PR and device). (PRs automatically notify the CH of changes
in cluster membership. so this information is already available at the clusterhead.) Every T seconds the
SCH sends a packet to each other SCH describing the changes that have occurred in any of the clusters
in its supercluster. In this manner each SCH is able to determine the primary hierarchical address of each
device in the network. The superclusterhead then sends the changes in network hierarchical addresses to
each of its clusterheads, thus maintaining the NT database at each CH. When PRs request a hierarchical
address, the CH responds with the address in its NT database.

3.4 Node Tracker at the SCH

This algorithm is almost identical to the one above, it differs in that the SCH does not distribute the
network hierarchical addresses to the CHs. Thus the CHs do not have the entire :,-twork database, only
the SCHs do. The requests for an address must therefore be sent to the SCH for resolution, either directly
by the PR or by the CH as agent for the PR. The response can be sent directly to the PR requesting the
address or to the PR's primary CH, who forwards the response.

3.5 Node Tracker at the SCH with Caching at CH

As above, except the PR must ask the CH for the address and the SCH must send the response to the
CH, who caches it for future reference.

9

I

I BBN Systems and Technologies Corporation Report No. 7164

I 3.6 Traffic Considerations

I The algonthm which has the NT at the CH requires more traffic for updating the databases, since it
requires the SCH to send the information to all its CHs. In addition, this algorithr %4uires the complete
transmission of the NT database more often, since it inust be transmitted to Lew CHs. However, thisI algorithm has the least possible traffic associated with requests, since thiey can all be answered by sending
one packet to the closest CH. Thus this algorithm has the least "uncontrollable" traffic (since we can't
control the rate at which requests are generated).

The algorithm with the NT at the SCH is has lower overhead, since it doesn't have to distribute the
NT database to the CHs. Thus it will have less total traffic when the rate of NT requests is low enough.
Sending the response directly to the PR is slightly more efficient than scrnding it to the CH, however it
doesn't allow caching, and thus may end up generating more traffic (depending on the length of time the
cache is valid and the number of "hits" on the cache).

Any of these algorithms ought to wok well; we anticipate experimenting with them to determine
how well each works.

10

I

Report No. 7164 BBN Systems and Technologies Corporation

I
I
3 4. Broadcast Algorithms for Surap 2

This Section describes the needs for broadcast algorithms in the Surap 2 design. The only broadcast
required between PR units is the , iting and direct connectivity information contained in the PROPs.
The information sent from PR units to CHs, or from CHs to SCHs is done on a point-to-point basis.
Therefore, this Section will discuss broadcast from a CH to each PR unit in the cluster, and between CHsU and/or SCHs. The broadcast algorithms described here are in general used for routing information or NT
requests ias described in each Section). Other details of NT design are discussed in Section 3.

4.1 Broadcast from Cluster Head to PR Unit

3 4.2 Requirements

There is a need for broadcasting an "Hierarchical Routing Table" (HRT) packet from each CH to the PR
unts in its cluster. The HRT packet gives the "'next cluster" for each other cluster in the supercluster.
and for each other supercluster. This is broadcast on an event driven basis, and supercedes all previous
HRT packets.

4.3 Recommended Algorithm

This broadcast uses a relatively straightforward flooding of the cluster. The CH places the routing
information in the HRT packet, along with a sequence number, and broadcasts it k times to its neighboring
PR units (see discussion of k below). Each cluster uses an independent sequence number. chosen by
the cluster head. Each PR unit, when it receives the packet, checks the sequence number. If this is an
old packet, it is discarded. If the sequence number identifies a new HRT packet, the new information
replaces the old table, and the PR unit broadcasts the packet k times.

The variable k will initially be set to one. If it is found to be common that some PR units fail to
receive the broadcast, then k may be increased. Nonetheless, there will always be a small chance that a
PR unit (or set of PR units) will fail to receive the broadcast. Therefore, in order to enhance the reliability
of this method, the sequence number is included by each PR unit in each PROP. There are two possible
ways to use this information:

1. Each PR unit, when it receives a PROP from a neighbor that shares its primary cluster, checks
to see if its neighbor has old cluster routing tables. If so. it retransmits the HRT. Naturally, this
implies that multiple neighbors are likely to be retransmitting the table, which should give a high
probability of reception (although there may be an increased probability of hidden collisions in this
case). In addition, this method implies that when the "slow" PR unit receives its new tables, it will

U 11

I

BBN Systems and Technologies Corporation Report No. 7164

recognize the table as new. and will broadcast it as well. This may be helpful if there is a set of
adjacent PR units that have failed to receive the routes. This approach is recommended due to its
simplicity.

2. Each PR unit, when it receives a PROP from a neighbor that shares one or more common clusters,
checks to see if it itself has old cluster routing tables. If so, it requests an update from the CH.
The packet that it uses to request this information is the same that it uses to join the cluster (or
change to primary or secondary status) in the first place (see Section 2.2). This method is not
recommended, but is an acceptable alternative.

Note that a PR may, by examination of the PROPs, determine that its HRT is out of date. In this
case, the HRT is flagged as old and never transmitted to other PRs. If a newer HRT is received, then it
is accepted, but it is only marked new if it corresponds to the highest sequence number received.

If the recommended algorithm is used then, when a PR unit first joins a cluster, it may obtain an HRT
from a neighbor by setting the sequence number to a predefined constant which indicates the absence
of an HRT. This initial HRT packet serves a number of purposes, including initialization of both the
inter-cluster (and supercluster) routing tables and the sequence number. Operation when a CH first comes
up is discussed in Section 2.4.

4.4 Alternate Broadcast Algorithms

The above algorithm makes use of the fact that the most recent broadcast made all previous broadcasts
obsolete. If we needed to broadcast other types of information within the cluster, we would need to
augment the algorithm as follows.

This alternate algorithm is almost the same as the algorithm given above. The CH picks a sequence
number and broadcasts k times. Each PR unit repeats the broadcast k times (where k = 1, 2, or 3). In
this case however, since older messages are not obsoleted by the most recent, each PR unit remembers
the last sequence number that it heard, plus any messages earlier than that sequence number that it hasn't
gotten yet.

Once again, there is some chance that a PR unit (or set of PR units) will fail to receive a broadcast.
Therefore, once again the sequence number (for each of its clusters) is included by each PR unit in
each PROP. In this case, we may be missing the most recent message, and/or other earlier messages.
It is not possible for a PR unit to determine that its neighbor is missing earlier messages on the basis
of the sequence numbers in the PROPs alone. In this case, therefore, we have the PR units request
retransmissions of the messages from the CH directly.

A possible third option for broadcasting within a cluster is to use reliable connections (e.g., SPP2)
between adjacent PR units. This eliminates the need to add extra reliability by using the sequence number
in the PROP. However, this eliminates the possibility of making use of the natural broadcast capability
between PR units. This method is therefore not recommended.

12

I Report No. 7164 BBN Systems and Technologies Corporation

4.3 Broadcast Between Clusterheads and/or Superclusterheads

The same broadcast methods will be used between CHs, between SCHs, and between CHs and SCHs.
The requirements for this broadcast are discussed in Section 4.6. There are a large number of possible
options that have been identified for this particular broadcast, with no obviously "best" option. For this
reason, we will first discuss the possible options in Section 4.7, before recommending a particular option
in Section 4.8.

The main differences between CH (or SCH) to CH (SCH) broadcast, as compared to broadcast within
a cluster, are: (1) the lack of pure broadcast; (2) since the CHs are fewer in number, and greater in
capability, we are less concerned about minimizing protocol complexity (e.g., we are riore willing to
have SPP2 connections between all neighboring CHs than between all neighboring PR units); and (3)
The requirements for the type of data to broadcast differ slightly.

Throughout this Section, we have implicitly assumed that if reliable connections are required between
CHs and/or SCHs, then SPP2 will be used for this purpose. This is not specifically intended as an
endorsement of SPP2. Although this is the most likely choice in the Suran environment, other reliable
end-to-end protocols, such as TCP, could be used instead. A complete evaluation of the various options
for a reliable.end-to-end protocol is beyond the scope of this document.I
4.6 Requirements

Routing metrics for the SPF algorithm are broadcast by CHs to the other CHs in its supercluster. and by
SCHs to all other SCHs. These Routing Metric Updates (RMUs) contain the complete local inter-cluster
(or inter-supercluster) connectivity as seen by an individual CH (SCH). RMUs obsolete all previous
similar messages from the same CH or SCH.

Routing Table Updates (RTUs) are broadcast from each SCH to all CHs in the supercluster. These
contain the next supercluster to reach every other supercluster in the network.

These routing updates must initially be sent when the network is still being initialized. In particular,
* it may be expected that each CH (or SCH) knows the identity of its neighbors, but not that it knows the

* identities of all of its peer nodes, nor that it knows a route to all of its peer nodes. It is therefore required
that the broadcast algorithm used for RMUs and RTUs work without knowledge of the complete routing
tables.

Whether Node Tracker requests are to be done between CHs or between SCHs (or some combination
of these) was discussed along with other aspects of NT requests in Section 3. Note that there is a question
as to whether Node Tracker requests and updates should be structured so that each request/update obsoletes
earlier ones. If this is done, then the broadcast algorithm is slightly simplified, and can be identical to
the algorithm used for routing information. Even in this case, however, we must keep track of RMUs,
RTUs, and NT packets separately, as a message of one sort clearly does not obsolete either of the other
sorts.

NT requests are made only after the routing tables are available. Thus (1) it is possible (although
not necessarily desirable) to use the routing tables in broadcasting NT requests; and (2) when the correct
response is found to a NT request, this response may be returned as a normal point-to-point transmission.

S13

BBN Systems and Technologies Corporation Report No. 7164

4.7 Options

This Section describes a number of options for broadcast algorithms between CHs and/or SCHs. In order
to more easily compare these algorithms, where necessary they will be illustrated by reference to th

example network in Figure 1. Here there are six "nodes" over which a message is to be broadcast. These
could be clusterheads within a supercluster, in which case the ovals in the Figure represent the clusters.
Alternatively, the six nodes could be six superclusterheads, and the ovals would be the corresponding
superclusters. The message to be broadcast originates at node A. and must be sent to the other five
illustrated nodes B through E.

C

ID
IB

3 ° E

I
I Figure 4.1: Example Network for Broadcast Algorithms

4.7.1 First Option; Spanning Tree Without Flooding

The first proposed algorithm is the one that we presented at the February 1985 designer's meeting in
Palo Alto. This algorithm uses the intercluster routing table to create a spanning tree containing all
cluster heads in the supercluster, without the need for flooding. Similarly the algorithm could be used
to create a spanning tree containing all superclusterheads, using the inter-supercluster routing table. The
requirement that the routing tables be available implies that this algorithm cannot be relied upon to
distribute the routing information itself, but may be useful for Node Tracking.

14

I

Report No. 7164 BBN Systems and Technologies Corporation

IThe basic idea is that each message sent over any particular branch of the spartng tree contains a
list of all destination nodes (CHs or SCHs) in that branch. When a node receives a message, it splits the
message into several messages. each containing a subset of the destinations in the list that was received.

Suppose that node A has a broadcast message to transmit. It uses the inter-cluster or inter-supercluster
routing tables to provide the identity of the other peer nodes, and a route to each of them. Note that
it would be relatively simple to send a separate request to each other node (this is given as option 6,
below). In some ways this may be more efficient than flooding the network with messages, but can be
improved on as follows.

If cluster head A simply transmitted a separate message to each other node, this would result in nearly
redundant requests on the links to nodes B and F. Thus, we propose that messages be piggybacked. Node
A makes a list of all nodes to which it needs to send the message, determines the "next cluster" or "next
supercluster" for each request, and then sends one message to the node for each "next cluster" or "next
supercluster" that appears on the list. The message contains a list of all nodes to which this message
is to be forwarded. Each node. when it receives the message, determines the appropriate "next cluster"

I or "next supercluster" for routing to each node on the list, and then forwards the message to the cluster
head or superclusterhead of each of these.

This algorithm has advantages of being relatively simple, and minimizing the total traffic on the
network. Unfortunately it fails if any node fails while holding the message. In addition, as it requires
that routing tables be available, it cannot be used for routing messages.

4.7.2 Second Option; Augmented Spanning Tree Algorithm

A second option, therefore, is to augment this algorithm in order to eliminate this "single node" method
of failure. There are two possible variations on this second option:

Each node could send the message to the next nodes on the tree as above, and then wait for each
to respond before sending an acknowledgement to the previous node. This provides a definite acknowl-
edgement to the source in the event of failure, but requires that each node keep track of the status of the
message for an extended period of time.

Alternatively, each node could send the message on to the appropriate set of next nodes, and when
it receives the SPP2 acknowledgements indicating that the next nodes have received the message, it
notifies the previous node in the tree. Thus each node maintains a copy of the message until the next two
levels of nodes receive the message. This method eliminates the "single failure point" problem of the
first approach, but still suffers from the problem that it can only be used for NT traffic, not for routing
messages. In addition, this method seems excessively complex for what it offers.

4.7.3 Third Option; Flooding with Acknowledgements

The third option is a fairly straightforward flooding method. The originating node picks a sequence
number and broadcasts to all of its neighbors. Each node must remember the last sequence number used
by every peer. Upon receipt of a broadcast message, each node checks the sequence number to see if this
is a new message. If the message is new, the node sends and ACK to the neighbor who sent the message
to it and broadcasts the message to each of its other neighbors. Otherwise, the node returns an ACK to
the immediate neighbor who sent the message and otherwise ignores the message. After transmitting a

15

BBN Systems and Technologies Corporation Report No. 7164

message to each neighbor. the node must wait for either an ACK or the message in response. If these
do not arrive within a timeout period, the transmission is repeated.

In our example, node A transmits a RMU message to nodes B and F. Node B returns an ACK to
node A. updates its routing tables, and sends copies of the message to nodes C and F. Similarly node F
sends an ACK to node A, updates its tables, and sends copies to nodes B and D. In this case, it is likely
that the messages from B to F and from F to B will cross in mid-stream. In this case, there is no need
for B and F to exchange acknowledgements. If either of these transmissions are lost in transit, then the
sending node will not know that it was lost, as it thinks that the message going the other way implied
acknowledgement. In this case, the node that received neither the transmission nor an acknowledgement
over a link will retransmit the message. For this reason, if a node receives a duplicate message over a
link it must acknowledge the duplicate. In our example, node D will act upon the first message received
(either from C or F). The second message received at D will be ignored, except that an ACK will be
returned to prevent retransmission.

4.7.4 Fourth Option; Flooding Over Reliable Links

The fourth option is the same as the third, except that the simple ACK is replaced by the use of a reliable
protocol (such as SPP2). SPP2 only assures us of local delivery. The sequence number is still needed to
damp out the broadcast. Here, upon receipt of a message, the node looks to see if it is new. If new, the
message is sent to each neighbor node except for the one that the message is received from. If this is an
old message, then no further action is necessary. Note that the acknowledgement scheme is handled by
SPIP2. and therefore no additional acknowledgements are necessary.

In our example, the operation is the same except that the acknowledgements are handled by the
reliable (SPP2) protocol. If the messages from B to F and from F to B cross in mid-stream, SPP2 will
nonetheless acknowledge each separately as no relation between the two will be known by the SPP2
implementations.

Option 4 differs from option 3 primarily in two aspects: (1) as discussed above, option 3 is slightly
more efficient in the case of colliding messages (2) Method 4 has the significant advantage of using an
already implemented (and fully debugged) protocol rather than a not-implemented (and possibly not fully
thought-out) acknowledgement scheme.

4.7.5 Fifth Option; Extended Flooding Algorithm

The fifth option is a proposal by Nachum Shacham intended for Node Tracker requests and responses[2].
This method is an extension to the flooding method, which allows the NT response to be returned even
in the event that the routing tables are not available, and offers a definite indication of failure when the
NT request cannot be satisfied. In addition, a STOP message is described which is intended to reduce
the extent of the search when a the NT requests has been satisfied. This method will only be very briefly
described here. For a complete description, please see the original paper[2].

Basically, this method is the same as method 4 above (flooding over reliable links) with a number of
additions. When each node first receives a search message, it remembers the node that sent the message
to it as its "preferred" neighbor. Note that if you conceptually draw the link between each node and its
preferred neighbor, you produce a spanning tree. When each node either finds the correct response to

16

Report No. 7164 BBN Systems and Technologies Corporation

the NT request. or determines that its subtree (for which it is the root) does not contain the response.
then it sends an appropriate message to its preferred neighbor. When the correct response is found, the
response is sent by each node to its preferred neighbor, and therefore passed back to the original source.
The node finding the correct response immediately sends a STOP message to all of its neighbors, which
it turn broadcast the STOP message so as to flood the network with STOP messages until they catch up
with the SEARCH message, thereby preventing additional searching. In addition, there are provisions
for correct operation of the algorithm if the network topology should change during a search.

We have several reservations about this method. This method is considerably more complex than
the simple flooding methods, and does not clearly offer significant advantages in our case. This method
require that each node remembers significant data about each message being broadcast (more than just the
sequence number of the most recent message) for a significant period of time. In times of network stress,
there may be multiple simultaneous outstanding messages from different source nodes. This implies thatUthere may be an excessive amount of data being maintained in order to support this algorithm. In the
event of topological changes, if the answer is not found, then the method proposed to deal with these
topological changes may require that the algorithm be re-run. This would add to the traffic and memory
problems in high-stress situations.

For NT requests, we don't believe that the "STOP" message will significantly reduce the total traffic
generated. For example, if we randomly choose the source of the request and the location of the item
being searched for (the easiest case to analyze, and a probable "average" case), then on the average at
least half of the network will have received the request by the time the STOP message can be initially
transmitted (more if there are simultaneous arrivals). If the STOP message propagates no more quickly
than the original request, then it will probably not stop much of the additional half of the network from
receiving the request. If, on the other hand, the request propagates slowly (either intentionally to allow
the STOP message to catch up, or inadvertently), then the memory requirements discussed above will be
even more excessive. Even if the STOP message were to propagate instantaneously, the additional traffic
generated by the STOP message would offset the gains made in limiting the transmission of the search.

4.7.6 Sixth Option; Repeated Transmissions

The sixth and final option is the simplest: the source node creates a separate message for each other
node, and sends each message out separately. Although this may seem like a rather expensive option,
for small networks it is actually quite efficient. For example, in the network in Section 4.7 (on page
14), node A would need to transmit five copies of the message. Two of these would require a single
"big-hop" (i.e., hops between CHs or SCHs), two would require two big-hops, and one would require
three big-hops (a total of 9 big-hops). In contrast, the flooding algorithm described as the fourth option
would require that each node transmit a single message to a one of its neighbors. This would require a
total of 9 transmissions (all between immediate neighbor nodes). Thus there would be fewer total packets,
traversing roughly the same total distances (measured in big-hops between CHs or SCHs) through the
network.

Consider networks of a constant average connectivity of C, and a total number of nodes N. As
N increases, the average path length will increase roughly proportional to V\ N. As a rough estimate,3 we can figure the diameter of the network to be approximately equal to the square root of N, and the
average path length to be approximately half this amount. The total number of packets with this method

* 17

BBN Systems and Technologies Corporation Report No. 7164

is equal to N - 1, thus the total distance traversed by these packets is approximately (.V - 1) < -V. In
contrast, the total number of packets with option 4 is N . (C - 1) + 1, each of which traverses a single
"big-hop". All of these figures ignore the additional acknowledgement traffic generated by SPP2, as this
will be proportional to the traffic mentioned here. The resulting traffic for networks of connectivity of 6
or of 10 is illustrated in Table 4.1.

N C Option 4 Option 6

49 6 168 246

64 6 252 321

100 6 495 501

144 6 858 721

196 6 1,365 981

64 10 252 577

100 10 495 901

196 10 1.365 1,765

289 10 2,448 2,602

400 10 3,990 3,601

Table 4.1: Number of Transmissions needed to Broadcast an Update by Flooding (Option 4) and by
Repeated Transmission (Option 6)

In Table 4.1, the network size N is the number of nodes (i.e., the number of CHs in a SCH, or the
number of SCHs in the network). Similarly, the "distance" is measured in big-hops. Table 4.1 shows
clearly that for an average connectivity of 6 or larger, simply sending the message separately to each
peer node is more efficient than a flooding algorithm until the network size becomes quite large. For an
average connectivity of 6, the break-even point requires greater than 100 nodes in the network. For an
average connectivity of 10, the break-even point is even larger. The two methods were roughly equal in
our example network as the small network size was offset by the low average connectivity.

The main problem with simply sending out the message independently to each peer node is that this
method, once again, requires that the routing tables be available in order to transmit the messages. This
implies that this option cannot be used for routing information. For NT updates and requests, this option
has several advantages. If we return a NAK (separate from the operation of any underlying reliable
protocol) when the information is not found, then this algorithm would allow us to determine if the
desired information is not available anywhere in the network. It is possible with this broadcast option
to search through only part of the network. For example, if we are searching for a PR unit or device
which was last known to be in a particular supercluster, we could look only in that supercluster and in

18

Report No. 7164 BBN Systems and Technologies Corporation

it's neighboring superclusters. If the address is found before the entire network is searched, then the rest
of the search can be eliminated.

4.8 Summary and Recommendation

The first, second and sixth methods proposed above require that the routing tables be available before

they can be used. They are therefore not appropriate for broadcast of routing information (RMUs and
RTUs). Routing information must be sent by a method that requires that each node know a route to its
immediate neighbor nodes only. The fifth method offers three advantages that are relevant only to Node
Tracker searching and has no advantage relative to the flooding methods for routing information, in spite

of considerable additional complexity. For these reasons, we strongly recommend one of the two simple
flooding methods (options 3 and 4) for dissemination of all routing information. Of the two, method 4
(flooding over reliable data paths) is preferred. The implementation and testing advantages of not having
to implement an additional acknowledgement scheme is considered to outweigh the slight inefficiency
of having to acknowledge both transmissions in the case where two nodes simultaneously broadcast the
same message to each other.

For Node Tracker traffic, there may be implementation savings in being able to use the same broadcast
algorithm as is used for the routing traffic. In addition, the "single point of failure" problem with method
1 is considered to make it unattractive. Methods 2 and 5 are both considerably more complex than the
simple flooding methods. In addition, of the advantages offered by method 5, the first advantage (offering
a return path for the successful response) is not necessary in our case since the normal routing tables will
be available. The second advantage (giving a definite failure indication when the NT request cannot be
satisfied, rather than waiting for a timeout) is not considered important. The third alleged advantage (the
abbreviation of the search tree by the STOP message) is not believed to help at all. For these reasons,
methods 1, 2, and 5 are all not recommended. The relative advantages of methods 3 and 4 remain the
same. The choice therefore comes down to either method 4 or 6. In this case, because method 6 is so
simple to implement, the advantage of using the same broadcast algorithm foi NT traffic and routing
traffic is not considered significant. For these reasons, we recommend option 6 for NT traffic.

19

I

I BBN Systems and Technologies Corporation Report No. 7164

I

Bibliography

I] R. Callon and G. Lauer. Hierarchical Routing for Packet Radio Networks. Technical Report SRNTN-
31. BBN Laboratories, Inc., June 1985.

[21 N. Shacham. A Distributed Search Protocol for Large Networks. Technical Report SRNTN-8. SRI
International, Nov 1983.

20

